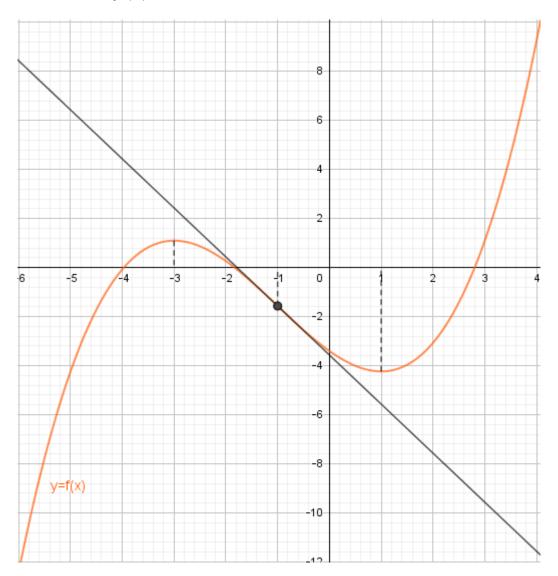
Q1) La courbe de la fonction f(x) étant



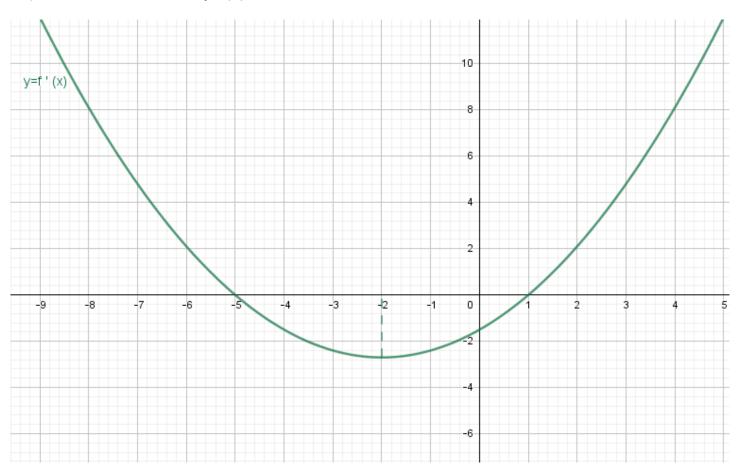
on obtient graphiquement

x	-6	-1		4
f(x)	concave	point inflexion	convexe	

et par suite

x	-6	-1		4
f(x)	concave	point inflexion	convexe	
f ' '(x)	_	0	+	
f'(x)			A	?

Q2) La courbe de la fonction f'(x) étant



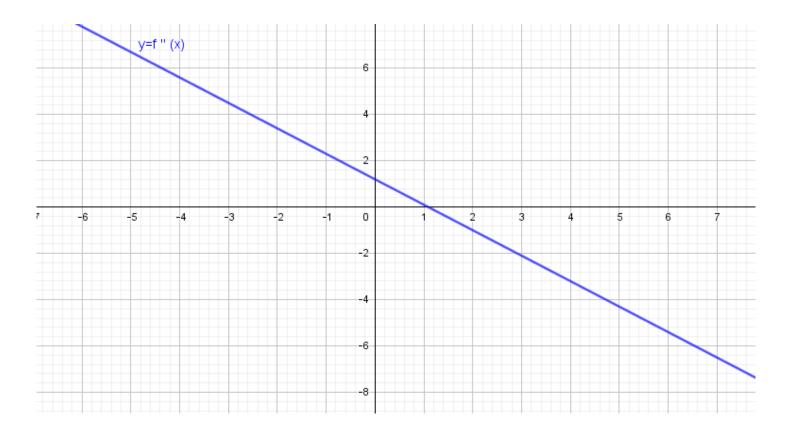
on obtient graphiquement

x	-9	-2	5
f'(x)		, A	

et par suite

x	-9	-2		5
f'(x)			1	
f''(x)	_	0	+	
f(x)	concave	point inflexion	convexe	

Q3) La courbe de la fonction f ''(x) étant

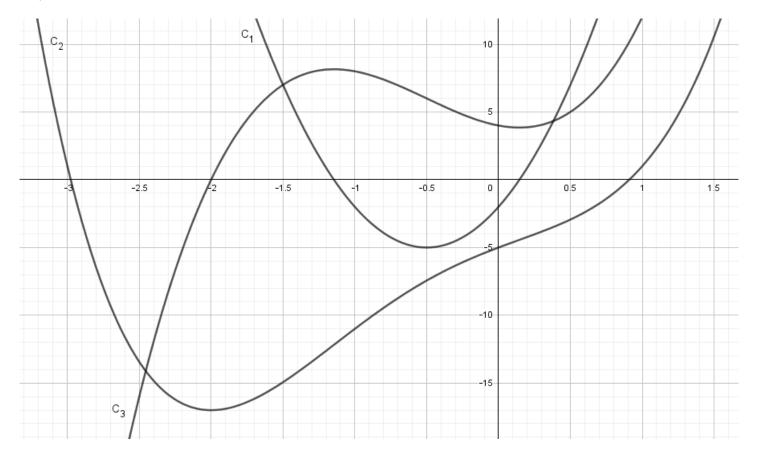


on obtient graphiquement

x	-6		1		8
f''(x)		+	0	_	

et par suite

x	-6	1		8
f''(x)	+	0	_	
f'(x)	*			
f(x)	convexe	point inflexion	concave	



Notons $f_1(x)$, $f_2(x)$, $f_3(x)$ les fonctions dont les courbes représentatives sont respectivement C_1 , C_2 , C_3 .

On observe, par exemple,

x	$-\infty$	-2	+∞
$f_3(x)$	_	+	
$f_2(x)$			

ce qui est compatible avec $f_3(x)=f_2'(x)$.

On observe, par exemple,

X	$-\infty$		~-1,15		~0,15		+∞
$f_1(x)$		+	0	_	0	+	
$f_3(x)$		*				A	

ce qui est compatible avec $f_1(x) = f_3'(x)$.

Ainsi

$$f_1(x)=f_3'(x)$$

$$f_3(x)=f_2'(x)$$

ce qui permet de conjecturer

 C_2 est la courbe de f(x)

 C_3 est la courbe de f'(x)

 C_1 est la courbe de f ''(x).